AIGC哪家强?“厂商全景报告”见分晓丨爱分析

转载
509 天前
9856
AI梦工厂

文章转载来源:AI梦工厂

来源:爱分析ifenxi

作者:爱分析

原标题:《2023爱分析·AIGC厂商全景报告》

本文为报告的节选。

近年来,随着移动互联网为代表的数字经济的快速发展,国内数字内容的消费需求持续快速增长,从质量、数量角度均进入升级通道。以往分别由专家、用户所主导的PGC、UGC数字内容生产模式,已逐渐无法完全满足数字内容的多样性、效率需求,基于人工智能技术的AIGC,能够深刻、广泛赋能数字内容生产的各类场景和内容创作者。

技术方面,深度学习模型不断迭代,Transformer迅速取代RNN系列变种,跻身主流模型架构基础,Diffusion、CLIP等新一代各模态基础生成算法的诞生和应用,使得人工智能内容生成百花齐放,产出效果趋于逼真,为基于AI的内容生成即AIGC提供了可能。

从基础设施角度,AIGC需要GPU算力、网络及存储等硬件基础设施的全方位支撑,国内过去在互联网及移动互联网时代所积累的云计算、数据中心、算力中心等领先全球的数字化基础设施,为AIGC的落地运行提供了坚实基础。

政策层面,党中央、国务院历来高度重视人工智能产业的发展,几乎每年都会有相应政策出台。2023年4月,中央政治局首次提及通用人工智能,为我国人工智能产业尤其是通用人工智能的发展奠定了总基调。在中央会议精神的指引下和产业发展需要的驱动下,地方政府政策积极跟进,促进人工智能产业政策的进一步落地。5月最后两天,北上深三地接连出台相关支持政策,大力支持国产大模型为代表的人工智能产业的发展。例如,深圳市在所发布的《深圳市加快推动人工智能高质量发展高水平应用行动方案(2023—2024年)》中提出了包括“千行百业+AI”在内的十八项举措,要力争创建全球人工智能先锋城市。

总之,被ChatGPT引爆后,在需求、技术、基础设施、政策等多重因素合力助推下,AIGC领域将迎来爆发式增长,AIGC有望成为Web3时代的重要基生产力工具。


AIGC的全景地图


图1:AIGC市场全景地图

本次报告爱分析将AIGC的全景地图分为三部分:

其一,基础层。基础层主要包括AI芯片、基础生成算法、数据集等,这些构成了大模型产生的基础。例如,大模型由于模型参数巨大、需要的预训练数据规模庞大,因此,对算力有极高要求,以英伟达的A100芯片为例,ChatGPT能够“大力出奇迹”,也正是数千张甚至上万张A100芯片所组成的算力基础设施提供强大算力保证的结果。

其二,模型层。模型层是AIGC的核心,整体由通用大模型、行业大模型两部分构成,是应用层的能力基础。通用大模型,核心是通过大规模无标注数据的训练,形成可“举一反三”的强大泛化能力和迁移学习能力。而行业大模型,则是面向垂直领域,基于自建模型或利用通用大模型,引入行业语料进行模型的进一步训练,以提升对行业/领域应用场景的支撑能力。

其三,应用层。大模型能力具备后,核心是让模型与千行百业的具体业务场景相结合,产生具体应用价值。通过大模型的能力赋能及提示词的交互赋能,甚至是整合了大模型能力的前端应用(如SaaS),可以让大模型在各行业、企业价值链各环节落地生根。


市场洞察


通用大模型市场格局及其对科技厂商与甲方企业的影响

通用大模型市场当前参与者类型虽多,但市场终局将高度集中,科技厂商及甲方企业需着眼终局,慎重选择通用大模型合作伙伴。

  • 当前,通用大模型的参与者类型众多。从目前的情况来看,有智源研究院等科研院所,有BAT、华为、科大讯飞等互联网大厂,有商汤科技等老牌AI厂商,也有智谱AI、光年之外等专注AI领域的创业企业,甚至知乎等拥有一定语料优势的互联网企业。


  • 从竞争格局来看,通用大模型市场,最终可能会由5-6家大模型厂商来主导。由于存在大算力、巨量数据集等高进入壁垒以及模型客观存在的“反馈-迭代”飞轮效应和持续的大资金投入要求,是典型无差别竞争要素主导驱动,加之大模型落地需要模型方、前端应用开发服务商、工具开发服务商甚至是数据服务商等完整的价值生态来整体协作以确保价值落地,单一厂商难以打穿整个价值链,生态化将成为必然趋势,这势必会反向加固进入和竞争壁垒,进一步巩固既有市场格局。因此,通用大模型市场未来将趋于集中。


  • 国内的商业生态趋向于自建而非开放,因此,对国内的科技厂商、甲方企业而言,应以终为始,慎重选择当前的通用大模型合作伙伴。一方面,从以云计算、移动互联网等为代表的国内信息产业演进历程来看,国内的商业逻辑趋向于构建商业闭环而非美国为代表的开放商业生态,因此,商业生态间的兼容性相对较差,打通适配成本高昂。另一方面,通用大模型从模型构建到预训练再到对外应用,从影响要素层面离不开大算力、巨量数据集、端到端AI工程化能力以及应用生态伙伴的协同发力,站在当前视角,为最大化减少投资失误,科技厂商及甲方企业需综合考虑以上因素,慎重选择具有优秀“长跑能力”的通用大模型合作伙伴。

图2:AIGC主要细分市场“倒金字塔”型逻辑示意


行业大模型市场成因及市场格局判断


行业大模型与通用大模型并行发展,未来整体百花齐放,但垂直领域仍将头部集中。

  • 受算力和C端商业化进程制约,国内市场上行业大模型与通用大模型并驾齐驱,并行发展。从业界实践来看,与国外不同的是,国内出现了通用大模型与行业大模型并行发展的局面。一方面,很多中大型企业都期望通用大模型能够实现私有化部署,这对GPU为代表的算力产生了很高要求。在中美博弈大背景下,A100、H100为代表的芯片被美国列入禁止出口商品名单,加之国内信创进展和适配需要时间,算力制约问题在可预见的周期内无法得到有效解决,甲方企业需要寻找对算力要求相对低、同时兼顾对垂直领域有良好模型效果的解决方案;另一方面,C端由于受到B端商业化开发进程的影响,同时受到《生成式人工智能服务管理办法(征求意见稿)》的制约,使得C端市场在短期内很难找到突破口和变现场景,而受政策监管相对偏少的B端市场成为国内大模型厂商寻找中短期增长路径和方向的重要选择。


  • 行业大模型市场整体将“百花齐放”,但各行业/垂直领域市场格局仍将头部集中。由于天然的更靠近客户,行业大模型不仅需要有一定的AI技术能力,更重要的是对于各垂直行业和领域有充分的行业Know-how的理解和行业预料积累,因此,行业大模型市场更多依赖行业经验和进入市场的时间等个性化竞争要素驱动,未来市场会整体将呈现“百花齐放”的基本格局,不同行业间较难出现横向集中,而对于各具体行业,模型效果驱动下,市场仍会头部集中。

AIGC落地应用进展、挑战及商业模式分析

应用层面,能源、金融、传媒、营销、数字办公等领域应用靠前,甲方AIGC落地面临路径选择、法律法规及内容安全等多重制约,目前落地主要以价值增强和效率提升为主,商业模式层面仍在探索,B端对底层能力或对最终结果付费将是主流,C端有待突破。


  • 从AIGC的落地进展来看,各行业落地进展不尽相同,能源、金融、传媒、营销领域、数字办公应用进度靠前。甲方在落地AIGC时,势必会经历从观望到探索、试点再到陆续上线的过程,并且不同行业由于存在场景丰富度、数字化程度、容错率等特征差异和预算充裕度差异,使得各行业AIGC的落地进程将千差万别。结合目前调研情况来看,国内AIGC的落地主要以能源领域(代码生成、文档生成、图片生成等)、银行证券(智能投研、智能风控等)、传媒领域(内容智能生成、搜索推荐等)、营销领域(文生图、文案生成等)、数字办公(智能会议纪要、智能群聊摘要、文档内容生成等)为代表,制造、医药、汽车等其他领域将逐步展开。


  • 从AIGC的落地挑战来看,甲方企业AIGC落地面临路径选择、法律法规及内容安全等多重挑战。企业初始试点场景选择及后续AIGC应用场景的拓展路径,将对企业落地AIGC的整个可行性形成较大影响,需慎重选择与评估;另外,行业相关法律法规也将对AIGC的应用形成制约。如金融行业,AIGC智能投顾是否能够属于独立民事主体、能否具有从业资格等尚无定论,将给这一领域的应用带来挑战。同时,AIGC产生的内容版权归属与内容安全问题都将在具体落地层面,对甲方在落地AIGC形成一定的挑战和制约。


  • 从AIGC对科技厂商和甲方的价值来看,目前主要是帮助企业实现原有产品和业务的“价值增强”或“效率提升”,尚未出现商业模式层面的实质性突破。很多科技厂商和甲方企业,其产品和服务原本已经依赖于原有的AI技术来实现部分智能化功能,AIGC的出现,为企业提供了价值和效率优化的新路径和新选择,但截止目前主要是原有价值和模式的延续,尚未发现有模式层面的重大转变。


  • 从商业模式角度来看,AIGC的商业模式尚未完全明朗和成熟,B端市场中短期内底层平台收费占主导,未来,按产出内容付费、用户订阅模式占比将持续上升,C端短期变现难度大,免费模式、超级入口模式将成为可能。首先,从全球AIGC厂商的商业模式来看,目前,最常见的有底层平台收费、产出内容付费,也有类似ChatGPT的用户订阅模式,未来甚至可能衍生出类似移动互联网时代的免费模式,针对不同主体,商业模式不尽相同。对于B端客户,底层平台收费将是整个AIGC生态中最主要、最持久的收费模式,未来,会进一步朝对结果付费的模式演进。一方面,B端企业应用AIGC的核心目的要么是对内进行提效降本、要么是对外优化和迭代自身产品与服务,因此,底层平台收费、产出内容付费以及通过SaaS软件或插件化产品进行订阅收费的模式均有可能。而大模型作为底层赋能平台,无论是直接对外提供调用接口,还是通过与中间件、SaaS厂商进行合作分成,甚至是大模型厂商实现从底层模型层到应用层的一体化打通,作为生态的核心,大模型厂商在合作中均掌握较强的话语权,因此,底层平台收费势必将是整个AIGC生态中最主要也最稳定的收费模式。另一方面,随着AIGC应用的持续探索、普及和产品的持续创新,应用层厂商话语权将得到增强,产业发展中后期,当大模型变成一种基础设施,终端客户将更看重AIGC的应用适配度和应用效果,以产出内容、融合了大模型能力的SaaS软件或插件为代表的、对结果付费的模式将逐步占优。

图3:AIGC商业模式演进示意

对C端客户,短期很难实现产品及模式突破,中长期可能会出现免费模式,或通过超级入口方式变现。C端用户目前多是尝鲜和试玩为主,但其AIGC的核心应用目的是提效、增强个人创新力,因此,关键是寻找到有足够用户粘性和智能化痛点的场景,并探索出健康可持续的商业模式。考虑到个人用户对于付费的价格弹性更高、预期更高、付费行为改变需要周期,同时考虑到B端产品的研发落地需要一定周期,因此C端的产品、商业模式落地需要较长时间蓄势和探索。此外,ChatGPT、Midjourney拉高了用户对于通用人工智能产品的预期,使得C端产品的订阅收费,短期内难度更高。未来,AIGC可能会出现免费模式,同时以广告等传统互联网模式进行变现,也可能会在诸如智能家居等场景中寻求与某些智能硬件的融合,形成超级入口级产品,进而完成变现。


厂商全景地图


爱分析基于对甲方企业和典型厂商的调研以及桌面研究,遴选出AIGC市场中在行业大模型、数字办公方面已经具备一定解决方案和落地能力的入选厂商。