由于微信限制了第三方应用的跳转,请使用以下方法。
1. 点击右上角的
2. 选择在浏览器中打开
文章转载来源:机器之心
原文来源:机器之心
图片来源:由无界 AI生成
本综述深入探讨了大型语言模型的资源高效化问题。
近年来,大型语言模型(LLM)如 OpenAI 的 GPT-3 在人工智能领域取得了显著进展。这些模型,具有庞大的参数量(例如 1750 亿个参数),在复杂度和能力上实现了飞跃。随着 LLM 的发展趋势朝着不断增大的模型规模前进,这些模型在从智能聊天机器人到复杂数据分析,乃至于多领域研究中的应用越发广泛。然而,模型规模的指数级增长带来了巨大的资源需求,尤其是在计算、能源和内存等方面。
这些资源的巨大需求使得训练或部署这样庞大的模型成本高昂,尤其是在资源受限的环境(如学术实验室或医疗领域)中更是如此。此外,由于训练这些模型需要大量的 GPU 使用,因此它们的环境影响也成为日益关注的问题,尤其是在电力消耗和碳排放方面。如何在资源有限的环境中有效部署和应用这些模型成为了一个紧迫的问题。
来自 Emory University,University of Virginia 和 Penn State University 的研究团队通过全面梳理和分析了当前 LLM 领域的最新研究,系统地总结了提高模型资源效率的多种技术,并对未来的研究方向进行了深入探讨。这些工作不仅涵盖了 LLM 的全生命周期(预训练、微调、提示等),还包括了多种资源优化方法的分类和比较,以及对评估指标和数据集的标准化。本综述旨在为学者和实践者提供一个清晰的指导框架,帮助他们在资源有限的环境中有效地开发和部署大型语言模型。
论文链接:https://arxiv.org/pdf/2401.00625
一、引言
资源高效的 LLM 需要理解 LLM 生命周期中涉及的关键资源。在这项综述中,作者将这些资源系统地归类为五个主要类别:计算、内存、能源、资金和通信成本。高效性在这里被定义为投入资源与产出的比例,一个更高效的系统能够在消耗更少资源的同时产生相同水平的输出。因此,一个资源高效的 LLM 旨在在所有这些维度上最大化性能和能力,同时最小化资源开销,从而实现更可持续和更易获取的 AI 解决方案。
资源效率在 LLM 中是一个至关重要且复杂的领域,它需要创新的解决方案来应对显著的挑战。这些挑战一共包括五个层面:
为了应对上述挑战,该综述提供了以下贡献:
二、资源高效大型语言模型的全新分类法
该综述提出了一个全面的分类法,以系统地理解和优化大型语言模型(LLM)中涉及的关键资源。这个分类法包括五个关键领域:计算、内存、能源、资金和网络通信,每个领域都针对资源利用的不同方面:
1. 资源分类
2. 技术分类
此外,该综述还引入了一个结构化的分类法,将提升 LLM 资源效率的技术分为明确、定义清晰的层级。其中包括五个主要类别:架构设计、预训练、微调、推理和系统设计。每个类别都在高效 LLM 开发和部署的生命周期中扮演着不可或缺的角色。
这个分类法旨在提供对多样化方法和策略的结构化和细致理解。这些方法和策略用于提升 LLM 的效率和加速,为当前研究领域提供了一个全面的视角。
三、方法论
1. 大型语言模型架构设计的新进展
该综述重点探讨了大型语言模型(LLM)的两大架构设计方向:高效的 Transformer 结构和非 Transformer 架构。
这些创新方向不仅优化了 LLM 的资源效率,也推动了语言模型技术的整体发展。
2. 大型语言模型预训练:效率与创新
该综述探索了 GPT-4 等大型语言模型(LLM)的高效预训练策略,这些策略不仅注重速度,还着眼于计算资源的最优利用和创新的数据管理。
通过这些策略,综述旨在展示如何以资源高效的方式预训练大型语言模型,不仅加速了训练过程,还确保了先进 LLM 的可持续和成本效益发展。
3. 大型语言模型微调:平衡性能与资源
该综述探讨了 GPT-4 等大型语言模型在特定任务上的微调策略。这些策略旨在在实现任务特定性能和维持资源效率之间找到平衡点。
通过这些策略,综述旨在展示如何在保证大型语言模型性能优化和资源限制之间达到平衡的微调方法。
4. 大型语言模型推断:追求效率与质量
该综述探讨了如 GPT 系列的大型语言模型在推断阶段的优化技术,重点是减少计算负载和内存使用,同时保持高质量输出。
通过这些策略,综述旨在展示如何在实际应用中高效部署大型语言模型,同时考虑资源限制和性能需求。
5. 大型语言模型的系统设计:优化与应用
该综述探讨了如 GPT 系列的大型语言模型在系统设计方面的关键策略,特别是在资源受限环境中的高效推断。
通过这些策略,综述旨在展示大型语言模型在各种部署场景中的系统设计如何实现效率和可扩展性的最大化。
四、大型语言模型资源效率技术分类总结
该综述探讨了应用于大型语言模型(LLM)以提升其在不同资源上的效率的多种技术。这些资源包括计算、内存、能源、财务成本和网络通信。每项技术在优化 LLM 资源效率方面扮演着重要角色。
计算效率
内存效率
能源效率
财务成本效率
间接影响:数据效率方法,如优化的训练目标和数据增强,通过提高数据使用效果,可能缩短训练时间,减少计算资源使用;动态推断技术,如早期退出和输入裁剪,通过减少推断阶段的运算需求,降低整体部署成本。
网络通信效率
通过这些策略,该综述旨在展示如何通过多种技术提高大型语言模型在各种资源上的效率。详细的技术与资源的对应关系可见下表。
五、大型语言模型评估数据集和指标
该综述详细分析了评估大型语言模型(LLM)资源效率的多元化指标,这些指标为全面理解 LLM 的资源效率提供了关键指导。
计算效率指标
能源效率指标
财务成本效率指标
每参数成本:训练(或运行)LLM 的总成本除以参数数量的比值。
网络通信效率指标
通信量:在特定 LLM 执行或训练过程中网络间传输的数据总量。
其他指标
数据集和基准测试
通过这些策略,该综述旨在提供一种全面评估大型语言模型资源效率的方法论。
六、大型语言模型的未来挑战和研究方向
随着大型语言模型(LLM)领域的不断进步,我们面临着多种开放性挑战,这些挑战为未来的研究方向提供了丰富的机遇。
处理资源类型的冲突:不同优化技术之间存在性能指标的权衡,如计算效率与模型参数数量的矛盾。关键挑战在于开发全面优化策略,平衡计算效率、参数计数和内存使用等多个目标。
资源效率技术的综合:有效整合多种 LLM 优化方法以增强总体资源效率是一个显著挑战。目前缺乏对这些方法如何协同作用的研究,需要系统地结合不同策略,以显著提高模型效率。
标准化和统一评估:当前缺乏专门评估 LLM 资源效率的统一标准基准。这导致无法全面一致地评估各种 LLM 在资源利用方面的表现,迫切需要专注于资源效率的标准化基准。
可解释性和鲁棒性:在追求效率的同时,也需关注 LLM 的可解释性和鲁棒性。开发既优化资源使用又保持透明度和弹性的方法,确保这些模型在不同部署场景中可靠且易于理解。
自动化机器学习(AutoML)在资源高效 LLM 中的应用:将 AutoML 集成到资源高效 LLM 的开发中是一个新兴领域。通过应用 Meta-Learning 和神经架构搜索(NAS),自动化模型优化的部分,有望减少手动超参数调整和定制模型设计的需求。
边缘计算中的 LLM:在边缘计算环境中部署 LLM 面临独特挑战,如设备的计算能力和内存资源限制。需要开发既资源高效又考虑隐私问题的 LLM 技术,以适应边缘计算场景。
理论洞察 LLM 的扩展规律:深入理解 LLM 性能如何随其规模和复杂性扩展是一个关键且未被充分探索的领域。这种理解对于开发不仅专注于模型压缩,而是针对提高 LLM 整体资源效率的方法至关重要。
七、结论
本综述深入探讨了大型语言模型(LLM)的资源效率问题,分析了当前的研究成果和挑战,并展望了未来的发展方向。它还讨论了 LLM 在计算、内存、能源、财务成本和网络通信等关键资源方面的高效技术,以及这些技术如何相互作用以提高整体效率。通过对比各种技术,综述揭示了它们在不同应用环境中的潜力和限制。
作者还强调了在资源效率评估中建立标准化和统一的评价体系的重要性。这不仅有助于更准确地比较不同 LLM 的性能,也为进一步的研究和开发提供了坚实的基础。
最后,综述探讨了 LLM 领域面临的一系列开放性挑战和潜在的研究方向,包括管理资源类型的冲突、综合资源效率技术、可解释性和鲁棒性、AutoML 的集成以及在边缘计算环境中部署 LLM。这些挑战提供了未来研究的丰富机遇,对于推动 LLM 向更高效、更可靠和更可持续的方向发展至关重要。
本综述为理解和优化 LLM 的资源效率提供了全面的视角,为未来在这一重要领域的研究提供了指导和灵感。
来源:机器之心
发布人:暖色
声明:该文观点仅代表作者本人,不代表火讯财经立场。火讯财经系信息发布平台,仅提供信息存储空间服务。
如文章涉及侵权, 请及时致函告之,本站将第⼀时间删除⽂章。邮箱:840034348@qq.com