由于微信限制了第三方应用的跳转,请使用以下方法。
1. 点击右上角的
2. 选择在浏览器中打开
文章转载来源:AI梦工厂
文章来源:量子位
图片来源:由无界 AI生成
对于ChatGPT变笨原因,学术界又有了一种新解释。
加州大学圣克鲁兹分校一项研究指出:
在训练数据截止之前的任务上,大模型表现明显更好。
论文重点研究了“任务污染”问题,也就是大模型在训练时期就见识过很多任务示例,给人一种AI拥有零样本或少样本能力的错误印象。
也有学者从另一个角度指出,大模型训练后参数冻结,人们不断提出新的任务也就是输入分布不断变化。如果模型不能不断适应这种变化,就表现成能力慢慢退化。
人们以为只提了个问题AI就能回答,其实是在训练时见过大多数常见任务。
随时间推移,人们开始提出更多新问题,AI表现就不行了。
比如对于代码问题,编程语言还在持续发展变化,迟早有一天效率会低到不可接受。
这是所有不具备持续学习能力模型的命运。
研究团队一共评估了12种模型,从ChatGPT之前的GPT-3系列、OPT、Bloom,到最新的GPT-3.5-turbo、羊驼家族Llama、Alpaca和Vicuna等。
它们都存在类似问题,也就是在训练截止之前的任务上表现明显更好。
评估任务污染非常困难,闭源模型根本不会公布训练数据,大多数开源模型也只是生命了来源,而不发布数据本身。
如果研究者重新爬取互联网数据,也有可能与模型训练时相比发生了变化。
对此,团队采用4种方法来测量任务污染程度:
在开源模型Alpaca和Vicuna上,存在训练数据污染的任务表现就比原版Llama更好的趋势明显。
从GPT-3 davinci-001版本到GPT-3.5-Turbo,这个问题越来越严重了。
图中X代表模型复述出了训练数据数据中的原始任务示例,绿色代表经过指令微调的模型没有复述训练数据。
灰色代表未经过指令微调的模型无法根据提示词指示复述训练数据,但不代表问题不存在。
前三种方法精度较高,但召回率较低。如果在任务的训练数据中找到数据,则可以肯定它已经看到了示例。
但由于数据格式的变化、关键字的变化以及数据集的大小,使用前三种方法没有找到证据并不意味着数据污染不存在。
第四种方法召回率高但精度低,容易受干扰因素影响。
特别是对于GPT-3系列,目前人们假设其能力提高来自于指令微调,但研究团队认为事实并非如此。
虽然在2021年之前的数据集上,davinci-002比davinci-001的性能有所提高,但在2021年之后的数据集上性能却相应下降,
通这表明GPT-3系列的指令微调只适用于某些早期数据集。
最后团队的结论为:
有人总结到:
这是一个循环。
论文:
https://arxiv.org/abs/2312.16337
参考链接:
[1]https://twitter.com/ChombaBupe/status/1741531065032798360
来源:AI梦工厂
发布人:暖色
声明:该文观点仅代表作者本人,不代表火讯财经立场。火讯财经系信息发布平台,仅提供信息存储空间服务。
如文章涉及侵权, 请及时致函告之,本站将第⼀时间删除⽂章。邮箱:840034348@qq.com