去中心化云计算的革命才刚刚开始?

转载
214 天前
1588
Foresight Ventures

文章转载来源: Foresight Ventures

作者: David Zhang@Foresight Ventures

凭借世界科技长期高速发展的态势,OpenAI,英伟达等巨头公司的市值在近两年增长数倍之多。Crypto x AI已经成为本轮周期的核心叙事,高涨的市场情绪和源源不断的资金投入证明强大的共识已经形成。AI作为目标的大环境下,去中心化作为AI发展的有力工具的确具有极大的吸引力和想象空间。虽然在实际业务的落地方面和中心化模式还存在着极大的差距,但借助web3的优势去拓展AI的四大核心方面,通过不断优化去发挥更大的潜能已成为web3参与者的一个共同目标。

  1. 数据
  2. 模型
  3. 训练
  4. 推理

目前,去中心化能通过技术在以上提到的四个方面去给予支持。首先,数据一定是最核心的,模型,训练和推理都是处理数据的方式,所以可以说数据是AI技术的原材料,而其他都是加工方式。无论是数据标注还是数据存储,去中心化在这里都拥有极大的作用和价值。

如果数据是原材料,那么算力即是加工原材料的道具,用来最大化产出的效率。接下来直奔我们这篇文章的主题,本文将围绕”算力“浅析Crypto x AI x DePIN的生态框架和其中的经济模型。

本文我将主要讲解“Crypto x AI x DePIN ”的生态框架和市场情况,帮助读者了解通过去中心化算力的价值和潜力⬇️

一、DePIN&去中心化算力生态框架

痛点:高质量算力作为AI研发的必备品,这种稀缺资源已被传统巨头垄断,导致初创公司和个人用户难以买到性价比合理的算力,这种高昂价格是大多数购买方难以接受的。

去中心化的解决方案:目前DePIN赛道的项目多数采用P2P的经济模型去为资源需求方提供高质量资源,允许每位用户都可以作为物理设施资源提供者, 与此同时获得token回报。

伴随去中心化AI算力需求的暴增,为更好的满足客户需求,去中心化AI算力供给生态的发展已经形成了平衡全面的框架。头部项目当中Io.net,Exabit和PingPong等分别在生态中担任着不同的重要角色,这三个项目的技术壁垒和对于去中心化算力未来发展的格局都颇为震撼。

去中心化AI算力生态主要由三个部分组成,这三个部分在生态里分别充当资源代理商,资源提供商和渠道商的角色:

资源代理商 - Io.net

Io.net是一个去中心化的计算网络,其以算力代理商的角色将高质量的AI算力,以便宜的价格提供给客户。在供应端拥有分布在全球的GPU,客户端目前以seed轮到B轮,专注于AI推理的初创公司。

近期这个基于Solana链的DePIN项目完成3000万美元的A轮融资,由Hack VC领投,Multicoin Capital,Foresight Ventures,Solana Labs等参投。

作为最顶级的AI算力资源代理商,Io.net皆在聚合1,000,000个GPU形成一个庞大的DePIN算力网络,其目的是为客户提供更低价的算力。用户可以手动将自己闲置的GPU&CPU算力贡献到 io.net 的平台上去获得$IO token的激励。核心目标是通过去中心化控制价格的情况下提供高质量AI算力,以便帮助AI初创公司降低成本。

Io.net提供的计算服务IO Cloud。IO Cloud采取cluster的构建模块使所有GPU保持相互连接的状态,这使GPU在训练和推理过程中去进行大规模协调工作。当GPU协调工作时,便可以集中算力去访问更大的数据库和计算更复杂的模型,AI初创公司在获取所需的同时,通过使用io.net的产品可以以十分之一的中心化价格去完成计算硬件部署。更加引人注目的是,io.net专注于聚合机器学习的算力。Io.net可以帮助Render Network,FileCoin等DePIN巨头格式化GPU供应于机器学习,针对技术底层实现最根本和直接的资源支持。

目前,io.net集合的GPU集群数量目前是行业第一。io.net线上可用的GPU数量超过20万个,其中可用量最多的是GeForce RTX 4090有接近5万张,其次是GeForce RTX 3090 Ti有超过3万张。

资源提供商 - Exabit

作为最有潜力的AI算力提供商,Exabits作为AI算力服务型节点,能够提供充足的芯片去进行深度机器学习。Exabits的团队在传统AI算力资源方面也可以称为鹤立鸡群,独一档的存在。团队曾作为AI巨头公司英伟达的一级代理商,依靠这样的技术资源壁垒,Exabit在资源供应端可以直接访问到数百个机房,A/H100,RTX4090和A6000机器的访问权应有尽有。

Exabits在客户端为web3算力巨头提供大规模的机器学习算力。相比Nebula Block客户每个月需要花费超过140,000美元去获取云服务,而迁移到Exabits之后,客户每个月的云服务使用费在40,000美元左右,在减少了超过70%的开销同时,也将效率提高了30%。

Exabits的主旨是通过独特的算力供给渠道,去给客户提供最快,最优质和最可靠的算力。高质量算力可以节约用户成本的同时,为客户提供全方位的服务选择。

Exabits所提供的AI算力质量已经得到多家AI算力代理商的认可,现在已经与Renders Network,Io.net等算力巨头达成合作,致于通过去中心化对机器学习贡献一份力量。

资源渠道商(Uber)- PingPong

PingPong作为DePIN资源渠道商,通过要求去匹配提供服务。PingPong采用平台式的开放协议,提供底层聚合资源后再去提供服务。PingPong的目标是成为DePIN的服务聚合器,可以理解为DePIN的1inch,或者聚合的Uber。

如何提供服务:PingPong通过控制层,获取各个网络和策略,资源情况,性能,稳定性等方面提供SDK,再通过路由算法去将SDK提供给用户。

痛点:各个DePIN网络里的资源和服务是有限制的,全球化去寻找资源配置因为地区过于集中而导致服务的质量不够好。

解决方案:路由算法 - 获取数据,网络的基本信息和机器信息等,聚合后产生策略,并且会通过客户要求匹配提供服务。目的是提升DePIN的应用层的质量和服务,并且在资源不足够的情况下去寻找最优价格的算力网络。

二、解析去中心化算力生态

Io.net和Exabits已经达成战略合作,Exabits作为拥有丰富GPU机器库的供应端,致力将提升io.net网络的速度和稳定性。Io.net将Exabits提供的最高质量算力以代理商的方式允许客户直接在io.net网络上进行购买和租赁。Io.net和Exabits一致认为,去中心化计算行业的成功以及web3与AI的结合只有通过早期行业领导者的紧密合作才可以去实现。伴随对计算能力的需求不断增长,传统云计算目前面临的一些问题:

  • 有限的可用性:使用AWS,GCP和Azure等云服务通常需要数周去获得对硬件的访问权限,而且最常用的GPU型号通常不可用。
  • 选择局限化:用户GPU硬件,位置,安全级别,延迟等方面的选择性受到局限。
  • 高成本:选取好的GPU价格昂贵,每个月项目在训练和推理过程中的开销很容易达到数十万美元。

去中心化计算的愿景是提供一个开放,可访问和负担得起的另一方案,能够解决中心化云服务提供商的核心问题,这包括有限的可用性,硬件的选择局限化和高成本的训练和推理费用。以目前的态势来看,挑战云计算中主要巨头地位仍需要创新者共同努力创造,并相互给予支持才可能踏出革命性的一步。

资产模式

  • 重资产模式

Exabits作为供应端,拥有英伟达作为后盾的绝对壁垒。机器学习算力有价值的机器只有A100,RTX4090和H100,这三台机器的单台价格约在30万美元左右。与此同时,这些机器都已经成为高度稀缺资源,被传统AI巨头公司长期垄断。这种情况下,Exabits所能在供应端对接到的资源是极其可贵的。由于散户共享自己个人GPU闲置算力的质量本身不足以支持大规模AI模型的计算和处理,所以Exabits在去中心化算力生态中充当的角色是至关重要,并且不容易被替代的。

Exabits采取的重资产模式需要有大量的固定资产投入,这种体量的资本投入,技术投入使初创公司很难去复制模仿。所以,Exabits若能与更多去中心化算力代理商去进行合作,在供应端不断扩充的情况下,给足行业需要的算力资源端的供给,这样一来,是容易对B2B去中心化算力领域实现行业垄断和产生规模效应的。

然而,最大的风险是当投入大量资本之后,无法持续性的为算力代理商提供资源,所以供应端能否大规模盈利极度依赖于算力代理商能否能有绵绵不断的客户。无论算力代理商是谁,只要有客户和有需求,Exabits作为供应端的价值会随着需求的增长而增长。

  • 轻资产模式

Io.net作为目前最出色的算力代理商,依靠在供应端拥有分布在全球的GPU,形成一个庞大的去中心化计算网络。从商业角度去看io.net,采取轻资产运营模式,通过社区运营和建立高度共识在AI算力代理这里建立强大的品牌。

Io.net的核心业务:

  1. 聚合散户GPU算力,并奖励token
  2. 从供应端获取高质量算力出售给AI创业公司

企业角度:

  1. 从供应端低买高卖高质量算力给C端客户
  2. 帮助用户通过共享闲置GPU算力去赚取token
  3. 为客户提供一个算力挖矿和staking平台,但前期需投入4000美元左右才能拥有比较好的收益。基于这点,Exabits也是offer出可以碎片化H100机器去进行租赁,从而提高流动性。

客户角度:

  1. Io.net network算力价格比其他中心化云计算服务便宜80%左右。
  2. Stake to earn & Share to earn。
  3. 客户投入一定资本后,便可以利滚利。

作为典型的轻资产模式公司,最大的优势是风险比较低,团队并不需要像供给端那样在开始之前投入大量机器成本去起步。由于较少的资金投入,对于公司和投资人来说更容易去获得较高的利润率。与此同时,因为行业进入的门槛低,所以商业模容易被抄袭复制,这对长期价值投资人来说是需要慎重考虑的一点。

三、从10到100?

假如说Exabit和Io.net的合作可以帮助去中心化算力生态从1走到10,那么带上PingPong一起走或许有机会走到100了。

PingPong的目标是成为最大的DePIN服务聚合器,直接对标web2的uber。作为渠道商,通过聚合各类资源的实时情况,将客户对接给价格和质量最优质的资源。PingPong采用B2B2C的轻资产商业模式,第一个B端即是供应端,对接第二个B端即是资源代理商,C端是通过信息提供给客户最优的资源选择。

渠道商作为平台,假如能尽可能的发展成可以发行资产的平台会使产品更加有价值。PingPong通过路由算法所提供的SDK可以计算资源去创建自己的AI Agent,转换新的金融资产的同时,通过SDK动态的帮助使用application的客户进行动态挖矿,专注于挖掘对计算资源有用的算力。这种模式理解为Assets on assets,可以极度增强资源和资金的流动性。

对于PingPong来说,他们希望看到能有更多的供应商和代理商进入去中心化算力生态,这样才能更好的凸显自己的优势,以及拓展更长的业务线和拥有更多客户。很简单的理解一下,百度和大众点评之所以能统治信息领域是因为有更多的商家以及信息上传到了互联网上,从而使客户对于渠道商的高度需求。

四、未来可期

去中心化云计算还在一步步发展着,虽然去中心化云计算的生态框架和模式已经变得非常清晰,各个角色的龙头也在履行他们在生态里的指责,但想要撼动传统云计算巨头的地位还早得很。当对比传统中心化云计算时,的确去中心化可以在概念上很好的解决客户的很多问题,但这个市场的整体资源和体量相比之下还是非常小的。在支撑AI推动的算力资源远远不够的情况下,市场需要另外一股清流,或者说一种模式去解除困境。我们现在可以看到的去中心化云计算的确可以满足初创AI公司的一些需求,后面何去何从,让我们共同作为这条颠覆之路的见证者,参与者一起追随革命的演变吧!